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Abstract. We analyze new contributions to the theoretical input in heavy quark sum rules and we show
that the general theory of singularities of perturbation theory amplitudes yields the method to handle
these specific features. In particular we study the inclusion of heavy quark radiation by light quarks at
O(α2

s ) and of non-symmetric correlators at O(α3
s ). Closely related with this is that we also propose a

solution to the construction of moments of the spectral densities at O(α3
s ) where the presence of massless

contributions invalidates the standard approach. We circumvent this problem through a new definition of
the moments, providing an infrared safe and consistent procedure.

1 Introduction

Sum rules analyses have extensively exploited the rela-
tion between the correlator of the quark electromagnetic
currents and the cross section of e+e− → hadrons under
the assumption of quark–hadron duality, to extract fun-
damental information of hadron systems. The two-point
function containing the QCD dynamics of the produced
quarks is built from the sum of the electromagnetic vector
currents associated to each flavor:

Πµν
had(p) = i

∫
d4xeipx

×
∑
q,q′

eqeq′〈0|T (q(x)γµq(x)) (q′(0)γνq′(0))|0〉

= (−gµνp2 + pµpν)Πhad(p2), (1)

where q and q′ stand for heavy or light quarks, indis-
tinctly, with electric charges eq and eq′ . Here we find two
types of correlators: the symmetric ones, both electromag-
netic currents corresponding to the same flavor, and non-
symmetric correlators, where q �= q′. Strictly, the latter
are needed to fully describe the electromagnetic produc-
tion of hadrons, even in the case where a definite flavor
type of hadrons is isolated in the final state. Sum rules
analyses applied to heavy quark production are written
down in terms of the symmetric correlator built from the
vector current jµ

Q(x) = eQQ(x)γµQ(x) of the heavy quark
Q, and the effects of the non-symmetric correlators are
never considered. The reason is that they begin to con-
tribute beyond O(α2

s ) in QCD perturbation theory (see
Fig. 1a), which means one order beyond the actual knowl-
edge of the (symmetric) heavy quark correlator ΠQQ. The
study of such new effects in QQ production will be manda-
tory if O(α3

s ) accuracy is reached in the future. However,
already at O(α2

s ) the production of heavy quarks QQ re-

ceives contributions which have not been accounted for
in the theoretical input of heavy quark sum rules either.
These arise from heavy quark discontinuities of symmetric
correlators built from quarks such that mq < mQ, as the
cut shown in Fig. 1b, representing the production of heavy
hadrons radiated off a pair of lighter quarks.

Finally, Groote and Pivovarov have recently pointed
out [1,2] that, at O(α3

s ), a three-gluon intermediate state
(see Fig. 2) contributes to the ΠQQ correlator. As these
authors have shown, this massless intermediate state in-
validates the usual definition of the moments Mn,

Mn =
1
n!

(
d

dp2

)n

ΠQQ(p2)
∣∣∣∣
p2=0

, (2)

for n ≥ 4, when they become singular. Consequently the
use of heavy quark sum rules at O(α3

s ) is debatable.
All the features we have just quoted arise as a con-

sequence of the interplay between the implementation of
quark–hadron duality and the proper definition of the ob-
servables in the case of heavy quarks QCD sum rules. The
correlation between the perturbative input and the ob-
servable information on the experimental side requires a
careful matching that cannot be fully achieved. Accord-
ingly the introduced uncertainties should be estimated
and included in the errors of the parameters determined
through this method.

Here we discuss the aspects pointed out above and
their consequences in the methodology of extracting in-
formation from QCD sum rules. The aim of this work is
to provide a consistent procedure to implement the per-
turbative input on the theoretical side of the heavy quark
sum rules. Our proposal relies on a careful application of
the general theory of singularities of perturbation theory.
The crucial point will be to isolate all the cuts related to
QQ production from the general vector two-point function
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Fig. 1a,b. Examples of perturbative non-heavy quark current
correlators at O(α3

s ) a and O(α2
s ) b that contribute to the

production of QQ states

(1) in order to construct a modified correlator containing
only contributions to heavy quark production.

In Sect. 2 we recall the theory of singularities of pertur-
bative amplitudes. The relation between the phenomeno-
logical and the theoretical input in the QCD sum rules
is discussed in Sect. 3. Hence Sects. 4 and 5 collect the
implementation of our proposal to include heavy quark
radiation off light quarks and to exclude massless singu-
larities, respectively. We will comment on the uncertain-
ties related with our method too. In Sect. 6 we emphasize
our conclusions.

2 Analyticity of Πhad(s)

As is well known two-point functions are analytic except
for singularities at simple poles or branch cuts, the latter
originating from normal thresholds of production of in-
ternal on-shell states. Assuming that the absorptive part
of Πhad(p2) starts at some point s0, vanishing below this
point, the correlator satisfies the dispersion relation1 [3]:

Π̂had(p2) .= Πhad(p2) − Πhad(0) =
p2

π

∫ ∞

s0

ds
s

ImΠhad(s)
s − p2 − iε

.

(3)
The absorptive part ImΠhad(s) is a physical observable, as
it is proportional to the total hadron production cross sec-
tion by a vector current Jµ =

∑
q j

µ
q . QCD being the un-

derlying theory of strong interactions, the quark–hadron
duality hypothesis allows us to identify, inclusively, the
states in terms of observable hadrons with the partonic in-
termediate states. Hence the optical theorem tells us that
the total absorptive part is the sum of the absorptive parts
corresponding to different intermediate partonic states:

ImΠhad(s) = − 1
6s

∫ ∑
n

dRn〈0|Jµ|n〉〈n|J†
µ|0〉

=
∑

n

ImΠn(s), (4)

1 Sometimes the Adler function defined by ∂Π(p2)/∂ ln p2,
to get rid of the subtraction constant, is used. The choice of
the regularization prescription is not relevant for our discussion
here

where the phase space integration has been explicitly
stated2. A similar separation between contributions of dif-
ferent final hadron states in the perturbative evaluation of
the two-point correlator, (1), would allow us to keep only
the desired heavy quark cuts in the symmetric and non-
symmetric correlators. Although Cutkosky rules provide a
method to isolate cuts corresponding to different interme-
diate states at the perturbative level, some care is needed
in their application.

The study of the analytic properties of perturbation
theory amplitudes shows that their singularities are iso-
lated and, therefore, we can discuss each singularity of a
perturbative amplitude by itself [4]. As a consequence, any
one-variable dependent amplitude F (z) satisfies a disper-
sion relation from Cauchy’s theorem given by3

F (z) =
1
2πi

∮
dz′ F (z′)

z′ − z
=

∑
n

∫ ∞

zn

dz′

2πi
[F (z′)]n
z′ − z

, (5)

where [F (z)]n is the discontinuity across a branch cut
which starts at the point zn and is associated to a definite
intermediate state. For the general two-point function in
(1), which depends on the total momentum squared p2,
we would have

Π̂had(p2) =
∑

n

p2

2πi

∫ ∞

sn

ds
s

[Π(s)]n
s − p2 − iε

, (6)

where now [Π(s)]n provides the sum of all the cut dia-
grams associated to a definite intermediate state labelled
n (n = qq̄, q′q̄′, ggg, qq̄q′q̄′, . . .). In the perturbative cal-
culation, every discontinuity contributing to [Π(s)]n can
be associated to a “reduced” Feynman diagram obtained
by contracting internal off-shell propagators to a point
and leaving internal on-shell lines untouched. Its contribu-
tion is written down following the Cutkosky rules for the
graph. However the discontinuity across a specified cut in
a single diagram does not need to be a pure real func-
tion in the physical region. Hence the separation between
the imaginary parts coming from different final states,
as stated in (4), does not seem to apply for individual
diagrams. But from (4) and (6) we can conclude that
[Π(s)]n = 2iImΠn(s), meaning that only the sum of all
cuts corresponding to a defined intermediate state pro-
vides the physical observable, i.e. ImΠn(s). Evidently, this
holds at any perturbative order in αs, and gives a prescrip-
tion to isolate contributions to different quark intermedi-
ate states in the hadron two-point function. This assertion
might seem obvious but it is not: A QQ cut on the right-
hand fermion loop in Fig. 2a does not provide, by itself,
a pure real contribution. Only when both QQ cuts, on
the left-hand and right-hand fermion loops of Fig. 2a, are
added we get a term contributing to the physical observ-
able ImΠn=QQ.

2 We use dRn = (2π)4δ4 (
q − ∑n

i=1 pi

) ∏n
i=1 dpi, where q is

the current four-momentum and dpi = d3pi/((2π)32Ei). The
−1/(6s) factor in (4) originates from Πhad = −gµνΠµν

had/(3s)
and the (1/2) factor from the unitarity relation

3 This expression also gives the residue Ri of a pole at z = zi

if we interpret the discontinuity as [F (z)]n = 2πiRiδ(z − zi)
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Fig. 2. a O(α3
s ) diagram contributing to the vacuum polariza-

tion function of the heavy quark current (the vertical dashed
line indicates the massless cut). b “Effective” diagram obtained
by integrating out the fermion loops. It also has the topolog-
ical structure of the “reduced” diagram that determines the
massless cut singularity

This last example also shows that some subsets of dis-
continuities of the same intermediate state give already
real functions prior to the summation of all contributions
at a fixed perturbative order. This is the case for the set
of cuts coming from a symmetric correlator, and for the
set arising from a non-symmetric correlator with currents
jµ
q , j

µ
q′ together with its conjugate. This is easily seen if

we rewrite the absorptive part corresponding to the state
n, ImΠn, as a sum of terms arising from symmetric and
from non-symmetric correlators:

ImΠn(s) = − 1
6s

∫
dRn

∑
q

〈0|jµ
q |n〉〈n|j†

q,µ|0〉 (7)

+
∑

mq<mq′

(
〈0|jµ

q |n〉〈n|j†
q′,µ|0〉 + 〈0|jµ

q′ |n〉〈n|j†
q,µ|0〉

) .

The first term in the r.h.s. of (7) represents the absorptive
contribution from symmetric correlators, and the pertur-
bative expansion of each one, following Cutkosky rules,
is clearly real. In the case of interest4, n ≡ [QQ], this
term contains the usual heavy quark spectral density built
from heavy quark currents, ΠQQ, and [QQ] production
through light quark currents correlators. The second and
third terms in (7) are conjugate to each other, so their sum
also gives a pure real number. In terms of diagrams, this
means that to extract the desired absorptive part from
non-symmetric correlators we need to add to the cut of a
diagram the corresponding one in the conjugated diagram
(see Fig. 1a; the discontinuity obtained from the same dia-
gram with quark q and quark Q lines interchanged should
be added to get a real contribution).

3 Phenomenology versus theoretical input
in heavy quark sum rules

The analysis above shows that clear control can be en-
forced on the perturbative side of the sum rules in or-
der to include or exclude specific contributions. However

4 Brackets [QQ] are short for any hadron state containing at
least a QQ pair and, possibly, light quarks and gluons too

while there is no doubt about the observable that provides
ImΠhad ∝ σ(e+e− → hadrons) when an exclusive hadron
sector (like, for example, heavy quark production) is spec-
ified, it is clear that the matching between the perturba-
tive and the phenomenological side includes uncertainties
related with the content and definition of the final state.

Heavy quark sum rules [5] have been successful in pro-
viding information on the heavy quark parameters. In
short they make use of global quark–hadron duality which
translates into the ansatz on the vector correlator Π[QQ]
(s):∫ ∞

s0

ds
ImΠphen

[QQ]
(s)

sn 
∫ ∞

4M2
ds

ImΠpert
[QQ]

(s)

sn + · · · , (8)

where ImΠphen
[QQ]

(s) on the l.h.s. gives the phenomenolog-
ical information on heavy quark production and it is re-
lated with the cross section of vector current production
of hadrons containing Q-flavored states. On the r.h.s. Im
Πpert

[QQ]
(s) is the QCD perturbative contribution to the cor-

relator, and in the lower limit of integration M is usually
taken as the pole mass of the heavy quark. Finally the dots
on the r.h.s. are short for non-perturbative (the gluon con-
densate essentially) contributions and possible Coulomb-
like bound states coming from non-relativistic resumma-
tions in Πpert

[QQ]
below threshold. These last two features

are not relevant for the discussion of this paper and have
to be implemented on our results without modification.

To a definite perturbative order in αs, ImΠpert
[QQ]

(s) in-
cludes all the absorptive contributions to the correlator
that provide [QQ] production. Notice that this is not the
same as the absorptive QQ contribution of the heavy
quark current correlator ΠQQ, as is usually assumed. The
total experimental cross section σ(e+e− → hadrons) can
be split into two disjoint quantities: the cross section for
producing hadrons with Q-flavored states, and the pro-
duction of hadrons with no Q-flavored components. If the
experimental set up was accurate enough to classify events
into one of these two clusters, the first class would be the
required ingredient for the phenomenological part of the
heavy quark sum rule. However this separation, imple-
mented on the theoretical side within perturbative QCD,
is rather involved. Up to O(α2

s ) there has not been any
doubt, in the literature, that contributions to this side
arise wholly from QQ cuts in the heavy quark correla-
tor ΠQQ. The physical picture behind this assertion relies
on the assumption of factorization between hard and soft
regions in the quark production process and subsequent
hadronization. The hard region described with perturba-
tive QCD entails the production of a pair of heavy quarks,
and the soft part of the interaction is responsible for the
observed final hadron content. Although possible, annihi-
lation of the partonic state QQ due to the latter interac-
tion is very unlikely, as jets arising from the short distance
interaction fly apart before long distance effects become
essential. Consequently, each jet hadronizes to a content
of Q-flavored states with unit probability. As local dual-
ity is implicitly invoked, this picture is assumed to hold
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at sufficient high energies; hence perturbative corrections
to the hard part are successively included through the
heavy quark currents correlator. We claim, though, that
similar QQ cuts are present in non-symmetric correlators,
starting at O(α3

s ), as the one shown in Fig. 1a, where the
left-hand part of the cut diagram is a genuine production
of QQ states triggered by virtual light quarks. If the use
of heavy quark sum rules up to this order is considered,
the inclusion of these terms of the correlator of a heavy
and a light quark currents should be taken into account.
According to our conclusion in the last section, once the
discontinuity provided by Fig. 1a is known, it has to be
added to ImΠpert

[QQ]
(s).

Other extra QQ cuts, i.e. ones not contained in ΠQQ,
arise even at O(α2

s ) as the diagram of Fig. 1b. In this case
the QQ pair is produced through the splitting of a hard
gluon radiated off a pair of light quarks. Whether this
cut should be accounted for or not on the theoretical side
depends crucially on which the content and the configura-
tion of the reconstructed final state are in the experimental
data, as the physical picture outlined above for pure QQ
cuts does not apply so clearly for QQqq discontinuities.
We will come back to this point at the end of Sect. 4. In
addition a discussion of other possible contributing cuts
should be given. The case of the three-gluon discontinuity
is postponed to Sect. 5.

In the following we will discuss, in turn, the inclusion
of heavy quark radiation by light quarks and the infrared
massless discontinuities noticed by Groote and Pivovarov.
We will provide specific solutions along the lines put for-
ward in Sects. 2 and 3.

4 Heavy quark radiation

Starting at O(α2
s ), symmetric correlators built from light

quark currents include four fermion cuts with a heavy
quark pair radiated off the light quarks as shown in Fig. 1b
(two additional diagrams, one with the two gluons at-
tached to the lower light fermion line, and the other with
one gluon attached to each light fermion line, should be
considered too). The sum of all these four fermion absorp-
tive parts in the three-loop diagrams with massless light
quarks currents has been calculated in [6], and can be cast
into the following form5:

12πImΠqqQQ(s) = RqqQQ (9)

≡ Nc

 ∑
i=u,d,s

Q2
i

C8

(αs

π

)2
∫ s

4M2

ds′

s′ R(s′)F (s′/s),

with

F (x)=
1
6

{
(1 + x)2 ln2 x+ (3 + 4x+ 3x2) lnx+ 5(1 − x2)

5 Notice that our definition of RqqQQ differs from the one in
[6]

− 4(1 + x)2
[
Li2(−x) + ln(1 + x) lnx+

π2

12

]}
. (10)

The function F (s′/s) gives the rate for the decay of a vec-
tor boson of mass s1/2 into a vector boson of mass s′1/2

plus a pair of massless fermions (qq). The spectral den-
sity R(s) = β(3 − β2)/2 (at lowest order) is the normal-
ized cross section for the production of a pair of fermions
with unit charge through a vector boson; here β = (1 −
4M2/s)1/2 is the velocity of the produced heavy quarks.
The integral can be solved analytically in this case and
the result is found in [6]. Note that the heavy quark pair
is created in a color octet state, and the factor

C8 =
1
Nc

Tr
(
λa

2
λb

2

)
Tr

(
λa

2
λb

2

)
=

2
3

retains this color structure. It is interesting to compare the
contribution from RqqQQ with the O(α2

s ) contributions
to RQQ (i.e. to the spectral density of the heavy quark
correlator). Note that in the high energy limit there is
no difference between the diagram shown in Fig. 1b and
the same one with Q and q lines interchanged or with
q = Q, both of them being included in ΠQQ̄. Differences
arise because the heavy quark currents correlator, ΠQQ,
also accounts for two heavy quark cuts where the internal
(light or heavy) quark loop represents a virtual correction
to the electromagnetic current.

We have written (9) in terms of a general R(s) func-
tion in the integrand because it allows us to introduce
in a straightforward way the final state interactions for
the heavy quark pair. In particular, we know that close
to threshold the Coulomb interaction between the heavy
quark pair dominates the dynamics. Resummation of lead-
ing terms ∼ (αs/β)n becomes mandatory, and gives rise
to the well-known Sommerfeld factor multiplying the cross
section:

Rthr(s) = R(s) × Cπαs/β

1 − exp(−Cπαs/β)
. (11)

The color factor C appears in the Coulomb QCD potential
and its value depends on the relative color state of the
quark pair. For singlet states C = CF , and the potential
is attractive, increasing the cross section at threshold. This
is the case of heavy quark production in e+e− collisions.
However, in our case the heavy quark pair is produced
through the splitting of a gluon. The Coulomb potential
becomes repulsive between quarks in a color octet state,
C = CF − CA/2 = −1/(2Nc), and the Sommerfeld factor
at low velocities then reads

−παs/6β
1 − exp(παs/6β)

β→0
=⇒ παs

6β
e−(παs)/(6β),

causing the cross section to decrease near threshold even
faster than β, the phase space velocity in R(s). The pro-
duction of heavy quarks radiated off massless quarks
through a virtual gluon is then very much suppressed in
the threshold region. However, as mentioned above, high
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energy quark lines can be considered massless and the con-
tribution from this diagram is numerically equal to the
same one with Q and q lines interchanged.

The inclusion in ImΠpert
[QQ]

(s) of four-fermion cuts com-
ing from light quark correlators is possible because we
have shown in Sect. 2 how to discern and extract these
pieces. As discussed before, the procedure depends cru-
cially on the definition of the observable information in-
put in the sum rule, and consistence between the theoret-
ical and phenomenological parts is required. Let us come
back to the discussion of Sect. 3. There it was argued why
perturbative QQ cuts are thought to reproduce the phe-
nomenology of two jet events. Notice that, in heavy quark
radiation from light quarks, the signature of the event is
likely to be a three-jet configuration where one of the jets
is generated from a gluon. If heavy flavor components are
to be found in this jet, the diagram of Fig. 1b would cer-
tainly be needed to account for these events on the the-
oretical side. However the heavy partons in this jet are
not as energetic as in a pure QQ production and, con-
sequently, the proposed factorization between long and
short distance effects may no longer apply, allowing for
interference between both regimes. In this case we can-
not argue that this kind of cut diagrams would result in
a final state with Q-flavored hadrons with unit probabil-
ity, although we may impose kinematical constraints to
reduce uncertainties in both the experimental reconstruc-
tion of the data and the theoretical cross section of these
QQqq states. This issue is the source of a recent discussion
in the literature related with the secondary production of
bb through gluon splitting [6,7].

5 Massless contribution
to heavy quark sum rules

Until presently the evaluation of the perturbative two-
point correlation functionΠpert(q2) (in this section we will
denote the heavy quark currents correlator by Π(q2)) has
only been carried out completely, with massive quarks, up
to O(α2

s ) [8] and the sum rules procedure, given by (8), has
been termed consistent and effective in its task because
the first branch point is set at the massive two-particle
threshold. However Groote and Pivovarov have pointed
out [1] that at O(α3

s ) there is a contribution to the corre-
lator which contains a three-gluon massless intermediate
state (see Fig. 2a). Its absorptive part starts at zero en-
ergy and, therefore, (8) is no longer correct because on the
r.h.s. there is a discontinuity starting at s = 0. Moreover
those authors have also warned for the fact that, at this
perturbative order, the massless intermediate state invali-
dates the definition of the moments Mn for n ≥ 4 because
they become singular. Let us recall their reasoning.

The perturbative contribution given by the diagram in
Fig. 2a has been calculated at small q2 (q2 � M2) in [1].
In this limit the quark triangle loop can be integrated out
and it ends up in the diagram in Fig. 2b generated by an
induced effective current describing the interaction of the
vector current with three gluons,

Jµ = − π

180M4

(αs

π

)3/2
(5∂νOµν

1 + 14∂νOµν
2 ) , (12)

with

Oµν
1 = dabcG

µν
a Gαβ

b Gc
αβ , (13)

Oµν
2 = dabcG

µα
a Gb

αβG
βν
c ,

where Gµν
a is the gluon strength field tensor. The effective

current in the QED case (Gµν
a → Fµν , αs → αem, dabc →

1) can easily be identified from the lowest order Euler–
Heisenberg Lagrangian (see [2]).

The correlator of the induced current (12) is then eval-
uated in the configuration space, giving

〈0|TJµ(x)J†
ν(0)|0〉 (14)

= − 34
2025π4M8

(αs

π

)3
dabcdabc

(
∂µ∂ν − gµν∂

2) 1
x12 .

In momentum space we need to perform the Fourier trans-
form of (14). Following the differential regularization pro-
cedure [9], which works directly in configuration space,
the result for the vacuum polarization contribution of the
diagram in Fig. 2b at small q2 reads

Πµν(q) =
17

2916000π2 dabcdabc

(αs

π

)3
(qµqν − q2gµν)

×
(

q2

4M2

)4

ln
(

µ2

−q2

)
+ O

[(
q2

M2

)5
]
, (15)

with µ the renormalization point in this scheme, and dabc

dabc = 40/3.
As noticed by Groote and Pivovarov [1], moments as-

sociated to the diagram in Fig. 2b are not defined if n ≥ 4.
Indeed differentiating (15) four times, at q2 ≈ 0, we get

1
4!

(
d

dq2

)4

Π(q2)

∣∣∣∣∣
q2≈0

=
17

218700π2

(αs

π

)3
(

1
4M2

)4 [
ln

(
µ2

−q2

)
− 25

12

]
+ O

[
q2

M10

]
, (16)

whose real part clearly diverges if we set q2 = 0. Larger n
moments are also infrared divergent, and so the authors
of [1] conclude that the standard sum rule analysis must
limit the accuracy of theoretical calculations for the n ≥ 4
moments to the O(α2

s ) order of perturbation theory. This
is, essentially, the conclusion of [1].

An infrared safe redefinition of the moments, to cure
the latter problem, has been provided in [2]; it consists
in evaluating the moments at an Euclidean point q2 =
−sE, sE > 0, thus avoiding the singular behavior. This
solution, as explained by the authors of that reference,
is rather ill-conditioned from the phenomenological side
though. Nevertheless the flaw in (8) due to the massless
threshold still represents a problem because even if, up to
O(α3

s ), we substitute the dispersion relation by
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Π̂pert(q2) =
q2

π

∫ ∞

4M2

ds
s

ImΠpert
QQ

(s)

s − q2 − iε

+
q2

π

∫ ∞

0

ds
s

ImΠ3g(s)
s − q2 − iε

(17)

(where ImΠpert
QQ

(s) includes discontinuities starting at s =
4M2), the spectral function ImΠ3g(s) associated to the
cut in Fig. 2a would hardly be implemented phenomeno-
logically as gluons hadronize to both heavy and light quark
pairs. We wish to provide a bypass to recover the balance
between the right-hand and left-hand parts of (17). We
will now see that if one does not insist on using full vac-
uum polarization for the sum rule analysis there is a way
to overcome this infrared problem.

In the heavy quark correlator the discontinuity across
the three-gluon cut gives a contribution to the spectral
function that is unequivocally real:

1
2i

[Π(s)]3g = ImΠ3g(s)

= − 1
6s

∫
dR3g〈0|jµ|3g〉〈3g|j†

µ|0〉, (18)

from which the dispersive part can be evaluated indepen-
dently of the QQ cuts. Accordingly we conclude that we
can identify and isolate the troublesome massless cut con-
tribution to the two-point function. Indeed (6) and (18)
justify our previous (17).

Let us go back then to (17). All the difficulty with
the phenomenological application of the sum rules is now
the fact that the contribution from the three-gluon cut is
contained in both sides of the equality. This intermediate
state hadronizes completely into hadrons with a content
of light and/or heavy quarks indistinctly. It is conspicuous
that if we could disentangle the heavy quark hadroniza-
tion, 3g → QQ, we should include only this piece into the
sum rule. Then the singularity at q2 = 0 would disappear
because heavy quarks are produced starting at q2 = 4M2.
However there is no way to sort out light and heavy quark
production off three gluons and, therefore, if we extract
this contribution from the heavy quark sum rules we are
introducing an uncertainty in the procedure because we
make sure that there is no light quark hadronization but
we miss the heavy quark production. It is easy to see that
the induced error is small, due to the fact that three glu-
ons hadronize mostly to light hadrons. On one side, in the
very high energy region and following perturbative QCD
with NF = 4, we have only a 1/4 = 25% probability
of finding a specified pair of heavy quarks produced. And
this is a generous upper limit because when we go down in
energy, phase space restrictions severely reduce the count-
ing of heavy quarks. Hence we estimate that excluding the
three-gluon cut we introduce a tiny (few percent) error in
the sum rules procedure.

Thus we propose an infrared safe definition of the mo-
ments by the trivial subtraction

Π̃pert(q2) .= Π̂pert(q2) − q2

π

∫ ∞

0

ds
s

ImΠ3g(s)
s − q2 − iε

=
q2

π

∫ ∞

4M2

ds
s

ImΠpert
QQ

(s)

s − q2 − iε
, (19)

M̃n
.= Mn − 1

π

∫ ∞

0
ds

ImΠ3g(s)
sn+1 . (20)

Of course (19) and (20) are meaningless unless we give a
precise prescription about how to subtract the contribu-
tion of the massless cuts represented by ImΠ3g. Our pre-
vious discussion gives us the tool with which to proceed.
Once the full O(α3

s ) Π
pert(s) is calculated we can extract

the imaginary part starting at s = 0 (which should go
with a θ(s) function) for any value of s. It is clear that the
θ(s) and θ(s − 4M2) terms in the imaginary part of the
vacuum polarization function correspond to three-gluon
massless and to QQ cut graphs, respectively, and ImΠ3g

and ImΠpert
QQ

are easy to distinguish, as (18) prevents the
appearance of mixed θ(s) · θ(s − 4M2) terms. Therefore
we identify ImΠ3g and we now plug it in the dispersion
integral of the right-hand side of (20) and perform such
integration. Divergences contained in both this integral
and Mn as q2 → 0 will cancel with each other if the same
infrared regularization is employed in the two quantities.
The intuitive choice would be a low energy cutoff s0 > 0,
and (20) would be more precisely written as

M̃n ≡ lim
s0→0+

[
1
n!

(
d

dq2

)n

Πpert(q2)
∣∣∣∣
q2=−s0

− 1
π

∫ ∞

0

ds
s

ImΠ3g(s)
(s+ s0)n

]
, (21)

where a vanishing term in the s0 → 0+ limit has been
omitted.

The evaluation of the Mn moments at q2 = 0 < 4M2

made sense because, up to O(α2
s ), this point, being far

away from the heavy quark production threshold, is un-
physical and the moments are well defined through an an-
alytic continuation from the high energy region. However
note that the absorptive three-gluon contribution starts
at q2 = 0 and perturbative QCD becomes unreliable. This
introduces a further new difficulty in evaluating Mn mo-
ments at q2 = 0, as we reach the physical non-perturbative
region. Our definition of the moments, M̃n in (20), skips
this problem by fully eliminating the massless terms and,
therefore, the final heavy quark sum rule will only involve
physics at q2 > 4M2, apart from possible bound states.

The general rule given above is valid for all orders of
perturbation theory, but it strongly relies on our ability
to extract the massless absorptive part from the full re-
sult of Π(q2) calculated at a definite order. Beyond O(α2

s )
complete analytical results for the heavy quark correlator
would be cumbersome and only numerical approaches may
be available. In this sense, it would be convenient to have
a method to calculate ImΠpert

QQ
only based on Feynman

graphs. We have already sketched such a method in the
discussion following (6): we just need to sum up all the
massless cut graphs to get ImΠ3g, and then proceed with
the dispersion integration that gives the associated disper-
sive part [10]. For example, at O(α3

s ), the only massless
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absorptive part comes from the three-gluon cut in the di-
agram of Fig. 2a; let us call Mµ

3g the amplitude producing
three gluons from the heavy quark current at lowest order
(i.e. through the quark triangle loop in Fig. 3). The mass-
less contribution to the absorptive part of the correlator
is then

ImΠ3g(s) = − 1
6s

∫
dR3gMµ

3g · M∗
3gµ, (22)

with the three-gluon phase space integral defined by∫
dR3g ≡ 1

3!
1

(2π)5
π2

4s

∫ s

0
ds1

∫ s−s1

0
ds2, (23)

in terms of the invariants s1 ≡ (k1 + k2)2 = (q − k3)2 and
s2 ≡ (k2 + k3)2 = (q − k1)2, and ki being the momenta of
the gluons. The real part would be obtained by integrating
(22):

s0
π

∫ ∞

0

ds
s

ImΠ3g(s)
s+ s0

=
−s0

288(2π)4

∫ ∞

0

ds
s3(s+ s0)

∫ s

0
ds1

×
∫ s−s1

0
ds2Mµ

3g · M∗
3gµ, (24)

which, in principle, could be performed also numerically.
The nth derivative of relation (24) with respect to s0, in
the limit s0 → 0+, would give the infrared divergent con-
tribution that should be subtracted from the full moments,
as dictated by (21).

Finally, we would like to mention that using the non-
relativistic expansion of the heavy quark correlator in sum
rules analyses does not avoid this infrared problem, at
least formally. The O(α3

s ) diagram of Fig. 2 will be highly
suppressed in the velocity expansion, following the non-
relativistic effective field theory approach, and therefore
it is not relevant in the corresponding heavy quark cur-
rents correlator. However such a two-point function cannot
describe the QQ spectrum for energies far from threshold
and even when higher n moments, which strongly enhance
the threshold, are used, perturbative QCD is needed in
order to implement the remaining high energy region; the
diagram of Fig. 2 has to be accounted for to properly in-
clude this input, and its discontinuity at s = 0 cannot
be obviated. This point is more clearly seen by noticing
that, besides the resummations in (αs/β) performed in
the non-relativistic correlator, one could improve such an
expansion by adding the terms needed to reproduce the
exact O(α3

s ) result Π(q2).

6 Conclusions

Heavy quark sum rules, relying on global quark–hadron
duality, are a compelling procedure to extract information
on the theory from phenomenology. However, as higher
perturbative order analyses are performed, the consistency
of the method demands the inclusion of novel features.
While at O(αs) the correlator of two heavy quark cur-
rents gives the full perturbative information, at O(α2

s ) we

d�
�
�

� ?

@
@
@

I

Fig. 3. Feynman diagram for the production of three gluons
at O(α3

s )

have noticed that a heavy quark QQ pair radiated from
light quarks in a correlator of light quark currents should
be considered. At O(α3

s ) the complexities grow with the
essential role of non-symmetric correlators. Closely related
with this situation is the feature recently pointed out by
Groote and Pivovarov of the uneasy problem arising from
a massless three-gluon discontinuity in the heavy quark
current correlator at O(α3

s ).
We have shown that rigorous results of the general

theory of singularities of perturbation theory provide all-
important tools to analyze the new contributions. The in-
clusion or exclusion of specific discontinuities on the per-
turbative side is shown to be feasible and the decision
involves a clear definition of the observable input on the
phenomenological side of the sum rules.

A solution for the problem pointed out by Groote and
Pivovarov at O(α3

s ) has been given. We conclude that the
appropriate procedure to obtain information about the
heavy quark parameters should make use of the infrared
safe corrected moments, defined in (21), that now indeed
satisfy the modified sum rule

M̃n =
1
π

∫ ∞

4M2
ds

ImΠphen
[QQ]

(s)

sn+1 , (25)

where the right-hand side can be extracted from the heavy
quark production cross section σ(e+e− → [QQ]). The un-
certainty associated to heavy quark hadronization of the
three-gluon should be taken into account but it is shown
to be tiny.

The analysis we have carried out is completely gen-
eral, relying on the theory of singularities of perturbative
theory amplitudes only, and provides an adequate tool for
the future analysis of heavy quark sum rules.
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